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Backgrounds

Research group focuses on microwave plasma-assisted material processing with particular emphasis on the synthesis of diamondPrevious students studied on the scaling properties of microwave plasmas
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Motivations

The field of microplasmas is an emerging technology within  the past decade.Various types of microplasma sources (DC, AC, RF, etc.)  designed by many different research groups have diverse  applications (sterilization, display panels, lighting, ozone production, microthrusters, spectroscopy, etc). Only a few studies can be found in the literature on microwave  generated microplasmas.  
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Non-microwave Microplasma Sources

Micro Hollow Cathode Discharge  (MHCD)
DC applicator

Dielectric Barrier Discharge 
(DBD)
AC – RF frequency (5 – 20 kHz)

Miniature Inductively Coupled 
Plasma (mICP). RF – Microwave 
frequency

Capillary Plasma Electrode (CPE)
AC – RF frequency
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Miniature Microwave Plasma SourcesWhy microwave?
– No electrodes
– High density
– Can generate surface wave plasmas (SWP's)Potential applications of miniature microwave discharges include:
– Plasmas source for micro-system (chemical or biological analysis)
– Treatment or sterilization of tubes and other small parts
– Local area materials processing
– Portable, low temperature sterilization source
– Micro-thrusters for space propulsion
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Objectives 

Explore microwave generated microplasmas
– Miniature microwave plasma sources mostly are based on:

• Modified microstrip transmission lines
• Modified waveguide or cavity

– Study the plasma behavior and the basic characteristics
– Demonstrate potential applications
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Presentation Outline

Background, motivation, and objectivePlasma source designs:
– Microstrip based and coaxial cavity basedPlasma diagnostics
– Optical emission spectroscopy (OES) and double Langmuir probe (DLP)Applications
– Etching of silicon and diamond, UV exposure of photoresistSummary
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Plasma Source Designs

 

Microstrip applicator
Foreshortened coaxial
cavity applicator
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Microstrip Applicator Tuning

stripline connected to 
the microwave power 
supply

Ground plane

Plasma DischargeStanding wave fields 
in the applicator
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•The microwave energy creates a standing wave along the microstripline and the adjustable stub 
•The maximum discharge length is achieved when the absorbed power is at the maximum
•The distance between the maximum power transfers to the load is at λg/2 or 6.12 cm.Argon, 50 sccm, 20 Torr, 13 W
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Plasma Behavior

Ar, 760 Torr inside 1 mm tube i.d.Pabs = 20 W.Ar, 1 Torr inside 2 mm tube i.d. with branch

Ar, 1 Torr inside 2 mm tube i.d. modified to create a loop

Plasmas have been created in tubes of various inner diameters including:
• 200 micrometers
• 450 micrometers
• 1 millimeter
• 2 millimeter
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Plasma Volume and Power Density

Power Density vs Discharge Tube Size
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Ar, Microwave power = 30W
CW Microwave Plasma Discharges in tubes less than 1-2 mm in diameter
require significantly higher microwave excitation power densities. 
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Plasma Volume and Power Density

Power Density vs Discharge Type
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Discharge diameter 2mm with microwave power of 30 W.

Ar/H2 corresponds to 95% Ar and 5% H2.
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Foreshortened Coaxial Cavity Applicator

This is a modified coaxial cavity with 
a capacitive  gap region. 

The cavity can be adjusted in order 
to resonate by adjustment of the
•cavity length (Ls)
•gap distance (Lg)
•loop antenna coupling probe 
position and orientation.
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Plasma Length

Variation of plasma length for Ar/O2 discharge versus pressure. Total flow rate: 20 sccm, 98% argon, 2% oxygen. Pabs: 6.5 – 24.5 W. 

• Plasma length decreases with increasing pressure
• Plasma length increases with increasing absorbed power
• Longer plasma columns can be generated with pure argon plasma. Addition of oxygen shortens the plasma length
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Microwave Generated Microplasmas

What have been established so far:
– Discharge tube sizes: power density is higher for smaller tube size
– Pressure: plasma length decreases as pressure increases
– Feed Gas: inert gas creates long plasma column. Addition of other gases reduces the plasma length
– Power: plasma length increases with increase of power.

Next: Plasma density, gas temperature, and electron temperature (note: using 2 mm i.d. Discharge tube)
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Optical Emission spectroscopy (OES)

Photo 
multiplier

Picoammeter

High Voltage 
input

Monochromator

Discharge

Focusing Lens

Computer

GPIB

Grating

Collimating 
mirror

Entrance 
slit

Exit 
slit

Theoretical backgroundEnergy separation between rotational levels in a given vibrational and electronic state are typically small compared with the thermal translational energy. Thus, nearly all gas kinetic collisions produce a change in the rotational quantum number Consequently, the relative rotational population distribution in a sufficiently long-lived vibrational state has a Boltzmann distribution and the rotational temperature reflects the gas kinetic temperature 
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The Honl-London formula for emission of the ∆Λ=0, R-branch 
The relative rotational line intensities I of a Boltzmann distribution 

Note: Bν’J’(J’+1) is the relative upper energy level
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OES – Gas Temperature Measurements
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• The rotational temperature for nitrogen discharge was determined using the R branch of the C3Πu  B3Πg (2-0) band, commonly known as the Second Positive System (SPS)
• Eleven emission lines (R20 – R30) in the spectrum range of 3758 Å – 3783 Å used to determine gas temperature
• The plot of ln(I/S) for this band is a linear function of the upper rotational energy
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OES – Gas Temperature 
Measurements
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Gas temperature of a mixture Ar-N2 discharges at 1 Torr in a 2 mm tube with 33 W microwave power was determined to be around 600K - 1200K.
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Double Langmuir Probe (DLP)

•Langmuir Probe diagnostics measures the current – voltage (I-V) characteristics of a discharge
•DLP were chosen since there was no well-defined ground electrode in the discharge  
•The I-V characteristic is governed by the following equation: 
•Note: 

–I1 is the ion saturation current for probe 1 
–A1 is the collection area of probe 1

• Collisionless sheath is assumed     ( λi >> s)
• Diagnostics were performed for argon discharges with pressure ranges from 3 – 10 Torr.
• Bias voltage applied range: -50 V – 50 V
• Probe area is bigger than the sheath thickness (A >> s2)
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DLP Measurements
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Log plot of the I-V characteristic from DLP diagnostic. C=I+I1/I2-I, A=A1/A2. I-V curves obtained using DLP diagnostic. Pressure: 10 Torr, Pabs: 2.34 Watts, flow rate: 10 sccm 
Re-arrange DLP I-V characteristic equation: To find the electron density (no):
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DLP Results

• The electron temperature ranges from 2.3 eV – 1.9 eV 
• the electron temperature decreases as the pressure increases 
• As the pressure increases, the charge density increases. The charge densities of argon discharges were measured to be 3 – 6x1012 cm-3  
• The results from electron temperature and charge density measurements confirmed that the assumed sheath thickness is valid 
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Spatial DLP Measurements

Charge density and 
electron temperature 
measurements using a 
double Langmuir probe. 
The probe distance relative 
to the tip of the discharge 
tube can be adjusted using 
the XYZ stage. 
Bias voltage applied 
ranges from    -50 to 50 V. 
Experiment was performed 
for argon plasma at 0.9 
Torr, Pabs 5.7 W, flow rate 
20 sccm. 
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Spatial DLP Results
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Axial Density Profile of SWP's

Y. M. Aliev, H. Schulter, and A. Shivarova,
 Guided-Wave-Produced Plasmas, Springer,

 Berlin, 2000 n (z)
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Computational Argon Plasma Model

Plasma model was developed for pure argon plasma with operating pressure ranges from 0.1 – 10 Torr. Assumptions
•Continuum mechanics 
•Maxwellian EEDF
•Non-equilibrium plasma, Tgas = 800 K
•Ambipolar diffusion
•Quasi-neutral plasma
•Sheath boundary conditionSolving
•Continuity equation for charge species
•Continuity equation for metastable species
•Electron heat equation

eAreAr +→+ *

eAreAr 2+→+ +

eAreAr 2* +→+ +

eAreAr +→+*

eAreAr r +→+*

eArArArAr ++→+ +**

ArArAr 2* →+

eAreAr +→+

Process Reaction Activation 
Energy

Ground State 
excitation

11.56 eV

Ground state 
ionization

15.6 eV

Step-wise ionization 4.14eV

Superelastic collision -11.56 eV

Quenching to 
resonant
Metastable pooling

Two-body quenching

Elastic scattering
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Computational Plasma Model
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Continuity equation for the charge species

Continuity equation for the metastable species

Electron heat equation
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e
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Boundary conditions for ne at the sheath edge

Boundary conditions for nexc at the wall (sheath edge)

seew TTQ Γ+= )2.52(
Boundary conditions for Te at the sheath edge

0=excn

1-D simulation domain

COMSOL software was used
Number of element in mesh: 100
Boundary condition at r = 0 is symmetrical 
B.C. 

Wabs is a constant value and is approximated 
from the power density (PD) measurements. 
For argon plasma below 10 Torr, PD ~ 10 
W/cm3

Initial condition: ne=constant
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1-D Plasma Simulation Result

Radial profile of electron density in 1-D argon plasma simulation. Power density: 10 W/cm3, pressure: 1Torr. 

1-D simulation results of the computational model of argon plasma is in a good agreement with the experimental results.Electron density range: 1011 – 1013 cm-3Electron temperature range: 1.2 – 2.6 eV
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Characteristics of SWP's

Gas Temperature range: 600 K – 1200 KCharge density falls off at the edge of the plasma columnElectron density range: 1011 – 1013 cm-3Electron temperature range: 1.2 – 2.6 eV
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Micromachining System

Micromachining System-Local area materials processing -The plasma applicator is used as either anion source, and/orUV light source
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Micromachining System Feature

Direct plasma processing Remote plasma processing

Top plate

Operating parameters:

 2.45 GHz 1 – 50 Watts
 2 mm i.d. quartz discharge tube
 Pressure 0.5 – 100 Torr
 Feed gases: Ar, O2, SF6, Ne, H2 N2
 Flow rates: 0.5 – 20 sccm
 Aperture size: 25 – 800 µm
 RF bias : 20 Vpp, 1 – 4 MHz 

Remote plasma processing:
 Radical source
 UV exposure of photo resist
Direct plasma processing:
 Ion source
 Ion/radical source
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Micromachining Plasma

Argon plasma
Pin = 10 W 
P = 0.5 Torr

Argon plasma
Pin = 20 W 
P = 0.5 Torr

Argon plasma
Pin = 30 W, P = 0.5 
Torr

I-V characteristics of the charge particle observation with no 
aperture

Increasing the absorbed power increase the length of the 
plasma column. However, when the applied microwave power 
is too big, plasma can be generated outside the discharge 
tube in the processing chamber. 

Charge particles collected on the substrate holder can be 
measured without an aperture or with a 450 µm aperture. 
However, using 15 µm aperture, the I-V characteristic could 
not be produced. 

For argon plasma, plasma sheath can be approximated
As several λDe. 
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Aperture Designs

Pyrex aperture

Thickness: 100 µm
Opening size: 10 – 500 µm
Laser drilled
(Fraunhofer USA CCL)

Silicon  wafer aperture

Thickness: 300 µm
Opening size: 50 – 800 µm
KOH wet etching
(Fraunhofer USA CCL)

Steel aperture

Thickness: 13 µm
Opening size: 25 -30 µm
(Melles-Griot)
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Ion Source Application: Silicon Etching

21 µm

2 mm
2 mmDektak surface profileWithout apertureStationaryAr/SF6 (35/0.5 sccm)Pabs = 5 WPressure = 1 Torrt = 10 minEtching rate = 2.1 µm/min

Optical image of an etched Si surfaceWithout apertureStationary
Discharge tube etched by SF6
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Ion Source Application: Silicon Etching

Dektak surface profile100 µm apertureStationaryAr/SF6 (35/0.5 sccm)Pabs = 5 WPressure = 1 Torrt = 3 minEtching rate = 0.6 µm/min
100 µm apertureAr/SF6 (15/1.5 sccm)Input power = 16 WPressure = 1.35 TorrRF bias = 4 MHz, 20 Vp-pSpeed: 100 – 500 µm/s, Stationary for 3 min

Optical image of localized Si etching using Ar/SF6 microplasma.

0.6 µm

0.7 µm
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Ion Source Application: Diamond Etching

No apertureAr/O2 (17/3 sccm)Pabs = 20 WPressure = 1.18 TorrRF bias = 4 MHz, 20 Vp-p t = 40 min
The relative vertical depth between the consecutive fringes of the same color for diamond is 130 nm. Etched depth ~ 650 nmEtching rate ~ 1 µm/hr

Image of UNCD surface etched using micromachining system Ar/O2 plasma 10x magnification of the fringes area.
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Ion Source Application: Diamond Etching

Experime
nt

Diameter 
(mm)

Depth (µm) Etch Rate 
(µm/hr)

Fringe Dektak Fringe Dektak Fringe Dektak

X1 (no RF 
bias)

1.75 1.6 0.52 0.6 0.5 0.6

X2 (1 MHz) 2 2.7 0.91 1.9 0.91 1.9

X3 (4 MHz) 2 2.5 0.78 1.7 0.78 1.7

Before

After

Distance between ruler marks is 0.5 mm

25 µm steel apertureAr/O2 (20/3 sccm)Pabs = 25 WPressure = 0.78 Torrt = 60 minRF bias = X1 : no rf biasX2 : 1 MHz, 20 Vp-p X3 : 4 MHz, 20 Vp-p 

Distance between the substrate to the aperture ~ 500 µm. Diamond etching rate: 0.5 – 2 µm/hr 
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Material Processing Results (Remote)

Optical microscope image of photo 
resist exposed to Ne plasma under 30 
µm aperture. Pabs = 14 W, Pressure = 
25 Torr, v = 10 µm/s

UV exposure of photo resist

Pabs = 34 W, 
Pressure = 0.84 Torr, 
Ar/O2 (20/10 sccm), 
aperture size 30 µm
v = 1 µm/s, 
line width = 125 µm 

Plasma ashing of photo resist
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Summary

Microwave generated microplasma applicators have been built: microstrip and cavity based.  Plasma length decreases with increasing pressure and increases with increasing microwave power. Power density for argon and Ar/O2 discharges are in the range of 10 – 450 W/cm3. The electron density and electron temperature of an argon plasma in the microplasma system at 1 Torr was experimentally measured using a double Langmuir probe. The electron density is on the order of 1011 – 1013 cm-3 and the electron temperature is 1.2 – 2.6 eV. 
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Summary

A computational model for low pressure argon plasmas was developed. 1-D simulation results for the argon plasma model are in a good agreement with the experimental results. Several applications of the micromachining system have been demonstrated. Silicon etching was performed using Ar/SF6 plasma with etching rate 0.2 – 2.1 µm/min. Diamond etching were performed using Ar/O2 plasma with etching rate in the range of 0.5 – 2 μm/hr.Application of the micromachining system as a free radical source and a light source were also demonstrated.
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Current Work

XG Sciences produces exfoliated graphene nanoplatelets (xGnP)Results:
– Built a system with a reduced power consumptions,
– Performed continuous operation,
– Maintained the yield qualityCurrent project:
– Assembling the next generation system that should double the yield volume. 
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Thank You 
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